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Theoretical and Experimental Investigation of the Impedance of
a Vertical Monopole over Perfect, Imperfect, and Enhanced
: Ground Planes

l. Introduction

The characteristics of vertical monopole antennas are generally well defined
([1], [2]). However, one factor that is not easily understood is the influence of the
ground constants (the conductivity, o, and relative dielectric constant, €) on a vertical
monopole's input impedance. Considering that the input impedance of a monopole
less than a quarter-wavelength in height may have a resistive part less than one ohm
(whereas the reactive impedance may be greater than 1000 ohms), the change in
the antenna's input impedance caused by an imperfect ground can be significant.

This report examines the effects of an imperfect ground on the input
impedance of a vertical monopole mounted above it, and shows that those effects
are minimized through the use of a radial ground screen. A theoretical expression
for the antenna impedance incorporating the ground effects is used to generate
impedance values for a variety of earth conditions. Theoretical impedances are then
compared with values from field measurements of monopoles. Methods of
determining the ground constants for a particular site are also presented, along with
results of actual area surveys. Efforts to validate the theoretical impedance results
through actual antenna measurements are presented and are shown to be only
partially successful.

This paper focuses on the effects on the monopole impedance due to the
ground, both with and without ground systems present. The general theory is briefly
presented in Section I, and is complimented by a detailed theoretical development
of the monopole impedance over an imperfect ground in Appendix A. Using
expressions from Section I, Section Ill contains explicit impedance calculations for
grbund conditions with characteristics similar to those found in the local (Washington,
DC) area for a number of monopole heights. These calculated results are then
compared to monopole impedances generated by an antenna modeling program.
Section IV contains the results of measurements of monopole impedance performed
at a "perfect" ground plane facility and over a normal, "imperfect”, ground plane.
Section V details similar experimental measurements taken when a finite' ground
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screen is introduced. Appendix B presents a method for measuring the ground
constants for a particular area, and contains the results of ground site surveys
conducted in the local area.

ll. Theory

Two factors detrimentally affect the input impedance of a short vertical
monopole over an imperfect ground. These factors are the limited héight of the
antenna and the less than ideal conductivity of the earth beneath it. The current
distribution on a short monopole results in a very large input capacitive reactance.

The earth ground causes an increase in the input resistance of a vertical
monopole due to the ground currents induced by the radiated fields. This
contribution in resistance can be much greater than the original radiation resistance
of the monopole, resulting in a significant loss of radiated power in the ground and
severely reducing the antenna efficiency. The situation can be improved by the use
of a radial ground screen, which provides a low-loss return path for the antenna base
current.

To develop an expression for the input impedance of a vertical monopole over
an imperfect ground, one starts with a simple vertical antenna element along the z-
axis of height h, situated above a ground half-space, as shown in Figure 1. Shown
are the terms identifying the electrical and magnetic properties of the two half-spaces
of air and earth. The terms for the earth (or ground) half-space are called the ground
constants. Note that these "constants" are functions of the mineral and moisture
content of the ground, and may also be a function of frequency. The magnetic
permeability of the medium is p, and the permittivity is € (u, and €, for free space).
The third ground constant, o, is the conductivity of the ground plane, and equals zero

for the free space condition.
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Figure 2.1: The representation of a vertical monopole over an
imperfect ground. The monopole is just above the ground plane.

The propagation constant (Y) and the characteristic impedance (M) of the

imperfect ground are:

Y= OO + jok)

o

n= joE+0

' For normal soil with little inherent magnetization, one can assume pu=,. For

free space, the above quantities are defined as:

Yo = j0[FigE, =jB = 2F

[ Ho
Mo = Eg

where A equals the wavelength of the antenna's intended frequency of operation,
and B is the free space propagation constant. The free space quantities Y, and n, are

virtually identical to the those for air, and will be used for the air half-space.




The antenna's self-impedance is separated into two parts,

Z.=Z,+AL (2.1)

where Zt is the total input impedance, and Zg is the input impedance of the
same antenna over a perfect ground. AZT represents the difference between the
perfect and imperfect ground cases. One may think of the perfect ground case as an
infinite ground screen. ‘

AZT was defined by Wait in [3], where it was aiso applied to both the lossy
ground and the imperfect ground screen problems. The development of AZT is
detailed in Appendix A.

AZT ,written in cylindrical coordinates (where p = ¥ X% + y2), is expressed as:
2
Az =1 [Hg(p, 001 2mp dp @2
0

where H(p,0) is the tangential magnetic field at the surface, defined below as:

; | .-iBr -iBp i -iPr I
N B - _o)-€ e ™ -
H (p,0)=- 5 sina}_ P cos(Bh - o) 5 cosol 5 sin (o0 Bh)J (2.3)
with r= @ +p)"?
o= B(h + ht)

B = free space propagation constant
h = height of monopole
ht = effective contribution to monopole height from top loading

For the case where there is no top loading (ht = 0), o = Bh, and AZ; can be
reduced to:




> - jB(r+p) = -j2Bp |
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These expressions are valid only when M >> B, which limits one to cases
where the displacement currents (changes in the electric field with respect to time,
rather than free electron flow) in the ground are negligible. This condition is
expressed as:

L/ jno - w2u€| >> @f g, (2.5)

With p in the denominator of each term of equation (2.4), there is a singularity
at p = 0. Since the object is to calculate the change in impedance from a perfect to
imperfect ground, including a base plate made of a good conductor does not
contribute to the expression for AZ;. Therefore, one can substitute the value "a" for
the lower limit of p , where "a" is the radius of the "perfect” base.

Adding a Radial Ground Screen

The inclusion of a radial ground screen at the base of the antenna has a
significant effect on the impedance expression for the monopole. An antenna ground
system supplies a low-resistance path from the antenna base out to a radial distance
where the radial current density in the soil no longer contributes an appreciable
power loss.

Although equation (2.2) still applies for the region beyond the ground screen
(p > b), a separate expression is necessary to account for the screen's effect on the

surface magnetic and electric fields. The vertical monopole with a radial ground
screen is shown in Figure 2.2.




|
' d EOQuO (air)

v

| | & u, 6 (ground)
| I
|<— b —]

Figure 2.2: The representation of a vertical monopole with a radial
ground screen of length b over an imperfect earth ground. Note that d
is the linear spacing between the ends of the radial conductors.

For the region p > b, the impedance of the ground is just the characteristic
impedance, 1, but when the ground radials are present (p < b), the impedance is the
parallel combination of the screen impedance, me, and the surface impedance, 7.
This is called the equivalent impedance, 7y .

NTe

N, O<p<b)= TEN

(2.6)




where:

d
e A 2nc
- 27p

and d N

-— lnod ln

N is the number of radials, d is the linear spacing (distance) between the ends of the
radial conductors and c is the radius of the wire. This expression is an
approximation, originally derived for a wire grid in free space [4], and assumes that
the wires are electrically close enough to approximate a grid.

For the case of a radial ground screen, we break AZy into two parts:

AZ = AZ + AZ,

where AZ is the change in the input impedance of the antenna due to the
influence of the imperfect ground outside the ground screen, and AZg is the change
affected within the imperfect ground screen system. The two expressions for AZy

are:

oo

AZ sn{ [Hg(p,0)1 21p dp @
® 1n 2
AZ = ! o Ho(p0 2mpdp. | (2.8)
with H(p,0) remaining as defined in equation (2.3).

Equation (2.7) is identical to equation (2.2), except that the lower limit of
integration is now b, representing the radius of the ground screen. Equation (2.8)
differs in that the equivalent impedance term my is now a function of the radial
distance p, and can no longer be moved outside of the integral. The lower limit "a"

still represents the radius of the conducting base plate.

To more concisely illustrate how the ground characteristics of the antenna site




affect the AZ calculations, the ground constants of conductivity and relative dielectric
constant were combined into a single function, 8. (The function 8 was first introduced

by Maley, et al, in [5]). The relation between the ground impedance and the constant
9, referred to as the "ground factor ", is shown below:

_ [ire _
n= O+jWE i, (2.9)

where § is defined as:

5= & /—-1-—-2— = bl (2.10)
1+j(d')e

with:
,_ [o¢€
é' = c°
v= %tan’l[(S')2er]

with €, being the relative dielectric constant for the ground plane. V is referred to as
the phase of the ground factor. Use of § allows one to present calculated AZ results
independent of a particular frequency or ground constants.




lll. Calculated Monopole Impedance Results

The theory set forth in the Section Il is now used to generate a data set for predicting
the berformance of a vertical monopole antenna over an imperfect ground. Antenna
performance is calculated using two methods. The first method uses the expressions
from Section Il and [3], and calculates the effect of the ground on the input
impedance using Mathematica®[6], a mathematical software package. The second
method is to generate a computer model of the antenna using the Numerical
Electromagnetics Code (NEC) program [7] to produce values for the feedpoint
impedance.

alculated Impedance Predictions for an Imperfect Ground

By eliminating the expression for the effects of the ground screen from the AZy
expression, one can predict impedance performance of a vertical monopole over a
uniform imperfect ground.

Using equation (2.4), with the limits adjusted to eliminate the singularity at p equal to
zero, (as stated in Section Il), a duplication of one of the original plots in Wait's work
(Figure 3 in [3]) was generated. (2.4) is written below with the corrected limits of
integration for a non-singular function as equation (3.1).

| e i2Br - o Bp) o2k |

A -n e dp -2 Bh_[ & dp - cos®ph|-&
7 = | j p - 2cos p - cos“Bh dp| (3.1
\Z, p S P aj p ] 3.1

" 2nsin?Bh La

where r= \/ h2 + p2, and h is the height of the monopole.

The results, shown below, were generated using Mathematica, which (among other
features) performs symbolic and numerical integration for complex expressions.
Figure 3.1a shows the magnitude of the change in impedance IAZI of a monopole,
which is normalized with respect to the ground impedance term, n, as a function of
the ground plate radius. The abscissa is the radius of the "perfect’ ground upon
which the antenna is centered, normalized with respect to the height of the antenna,
and can be thought of as the radius of a circular perfectly conducting antenna base




plate. Computations were performed for antenna heights of 0.1, 0.151, and 0.25A\.
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radius of perfect ground plate, a/h

Figure 3.1a: The incremental input impedance magnitude for a vertical
antenna situated over a perfectly conducting disc on a homogeneous
ground, normalized with respect to the ground impedance,n.

Figure 3.1a includes values from Wait's original calculations (Figure 2 in [1])
and shows general agreement with those results. Figures 3.1b and 3.1c are similar
to 3.1a, except that they illustrate the effects of the ground plate on the real and
imaginary components of the normalized input impedance.

o O o o
T = AT = I

Re {4nAZ/m}

| |
o o
T
v N

[= 3

1
o

-

Radius of perfect ground plate, a’h

Figure 3.1b: The incremental input resistance for a vertical antenna
situated over a perfectly conducting disc on a homogeneous
ground, normalized with respect to the ground impedance, 1.
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Radius of perfect ground plate, a‘h

Figure 3.1c: The incremental input reactance for a vertical antenna
situated over a perfectly conducting disc on a homogeneous
ground, normalized with respect to the ground impedance, 7.

These figures show that the greatest contributions of the ground to the
antenna input impedance occur close in to the antenna. Both the area of
appreciable contribution and the magnitude of the impedance change increases with
the height of the monopole.

This completes the comparison with Wait's results. For the range of a/h of
interest to this development, the conducting base plate (of radius a) is kept quite
small compared to the height of the monopole (h). Figures 3.2a and 3.2b provide a
closer examination of the normalized change in resistance and reactance for small

values of a/h.
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0.025 0.05 0.075 0.1 0.125 0.15

Radius of perfect ground plate, a/h
Figure 3.2a: The incremental input resistance for a vertical antenna
situated over a perfectly conducting discoid on a homogeneous ground,

normalized with respect to the ground impedance, m. This figure
provides an illustration of the behavior of AR for small values of a/h.

Radius of perfect ground plate, a/h

0.05 0.1 0.15 0.2 0.25 0.3
-0.25¢
h=0.1A
__ -0.5%
§ _0.75_ h=0.15)\,
£
£ -1.25¢
-1.5¢ ‘
h=0.25\ —
-1.75

Figure 3.2b: The incremental input reactance for a vertical antenna
situated over a perfectly conducting discoid on a homogeneous ground,
normalized with respect to the ground impedance, m. This figure
provides an illustration of the behavior of AX for small values of a/h.

These figures illustrate, for small values of a/h, (equivalent to having no
ground plate connected to the antenna base), that AX is more dependant on the
antenna height, while AR (Figure 3.2a) is dependant on the radius of the perfect

ground plane.
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In order to address the effects of the ground on a vertical monopole
independent of any perfect (or imperfect) ground system, a perfectly conducting
"base plate" radius of a = .001A, representing a small conducting plate (withm = 0) at
the base of the antenna, is assumed. This was chosen to match the same value
used by Maley, et al, who generated a large body of data for AZ in reference [3],
based on Wait's theory in [1]. At 18 MHz, the frequency chosen for the field testing of
the theory, this works out to be approximately 1.651 cm. Since the most significant
contributions from the ground to the antenna impedance occur closest to the
antenna, as much of that area as possible was included in the calculations.

Figures 3.3a, 3.3b and 3.3c were generated using (3.1) to illustrate the relation

between the change in input impedance with increased monopole height. AZ is
again normalized with respect to ground impedance.

104

l4rAZ/m|
o

0.05 0.1 0.15 0.2 0.25
Antenna height, h/A '

Figure 3.3a: The incremental input impedance of a vertical monopole over

an imperfect ground normalized with respect to the ground impedance, 1,
as a function of the antenna height, normalized with respect to wavelength.

Base plate radius a = .001A.
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Figure 3.3b: The incremental input resistance of a vertical monopole over

an imperfect ground, normalized with respect to the ground impedance, T,
as a function of the antenna height, normalized with respect to wavelength.

Base plate radius a = .001A.

Antenna Height, h/A
0.15 0.2 0.25

0.1

-0.25¢
-0.5¢
-0.75¢
-1+
-1.25¢
-1.5¢
-1.75¢

Im{ 4n AZm}

Figure 3.3c: The incremental input reactance of a vertical monopole over
an imperfect ground, normalized with respect to the ground impedance, n,

vs. the normalized antenna height. Base plate radius a = .001 A.

Normally, monopole performance improves considerably as the height is
increased. However, Fig.s 3.3b and 3.3c show that there is a corresponding
increase in the ohmic resistance, AR, and in the capacitive reactance, -AX, with
increased antenna height caused by losses in the ground, resulting in reduced

14




antenna efficiency.

To obtain a complete picture, one must incorporate the ground characteristics
of the antenna site into the AZ calculations. As stated in Section li, the ground
constants of conductivity and relative dielectric constant can be combined into a
single function, 8, as was done by Maley in [3]. The relation between the ground
impedance and the constant §, referred to as the "ground factor *, is repeated below:

_ [ire _ r |
n-,/—c+jm fi e d (3.2)

where § is defined as:

5= & —1—2= P (3.3)
1+j@d) e,
with:
,_ [o€
o' = G°

y= ?ll-tan'l[(ﬁ')zer]

with €, being the relative dielectric constant for the ground plane. V is referred to as
the phase of the ground factor. Note that ldl < 1/%;.

From measurements made in August of 1990 at a field site located at Waldorf,
MD, & was calculated to be approximately 0.25, and ¥ was calculated to equal 0.47

radians (27 degrees). The condition for the theoretical expressions in Section |i,
equation (2.5), was that the propagation constant in the ground must be much
greater than that for free space:

|«/ juoo - mzuel >> 0 Bk, (2.5)

11.92 ¥ 6% + .000169 >> 0.377

For ¢ = .00941 (from the measurements at the Waldorf site), the left side of the

15




above condition is calculated to be 1.507, which is barely four (4) times 0.377.
Therefore, the ground constants of the Waldorf site do not quite mean the condition
for approximation. However, they were much closer than any of the other sites
measured. Therefore, the ground constants from the Waldorf measurements are
used through much of this section, unless noted otherwise, on the assumption that
they were sufficient for illustration of the theory.

The figures that follow illustrate the relationship between AZ and variations in
the ground represented by the ground factor terms § and V. Figures 3.4 and 3.5
show the change in impedance for an excellent grou’nd (6=0.03, ¥=0) and a poor
ground (6=0.25, ¥=0.471 radians). The & and y from Waldorf site represent the poor
ground.

40t
18=0.25, y=0.471

_. 30¢

)

o

< 20t

107 18=0.03, y=0 —
0.06 0.4 0.16 0.2 0.25

Antenna height, h/A

Figure 3.4: The input resistance increment of a vertical monopole over an
imperfect ground as a function of the normalized antenna height, for an

excellent ground (8=0.03) and a ground type surveyed in the Waldorf, MD
area. Base plate radius a = .001A.
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15=0.03, y=0

N\

18=0.25, y=0.471

AX(Q)
RN oW ow

0..05 0..1 D..15 0.2 0.25
Antenna height, h/A

Figure 3.5: The input reactance increment of a vertical monopole over an
imperfect ground as a function of the normalized antenna height, for an

excellent ground ( 3=0.03) and a ground type surveyed in the Waldorf, MD
area. Base Plate radius a=.001A

Curves for the incremental impedance response as a function of the ground
factor were also generated. Since § and ¥ are not independent, one must change ¥
as 18] is varied. To keep & and V¥ consistent, one method is to specify the two ground
parameters (o and g;) and "sweep" the frequency through the HF band. A second
method involves varying 18| and computing the phase V, using that |5| along with a
specified . This latter method is used to generate Figures 3.6 and 3.7. The g is
taken from experimental results of ground samples at Waldorf in the HF band. (The
results presented later in Appendix B show that the &, changes little as the frequency
increases above 5 MHz.) A plot of ¥ generated as a function of 19|, with a specified &,

of 13, is shown in Figure 3.8.

17




0.05 01 015 0z 05

I
Figure 3.6: The input resistance increment for a vertical monopole over imperfect
ground, as a function of the ground impedance factor, |8|, for h=0.25A and h=0.1A.
Note that the ground factor phase W varies as a function of | &, and a relative
dielectric constant (gr) of 13 has been assumed throughout.

AX (Q)

005 01 015 0z 055t
5l 8

Figure 3.7: The input reactance increment for a vertical monopole over imperfect
ground, as a function of the ground impedance factor, |8|, for h=0.25\ and h=0.1A.

Note that the ground factor phase \ varies as a function of | &, and a relative
dielectric constant (er) of 13 has been assumed throughout.
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3l
Figure 3.8: The ground impedance phase term V, as a function of the ground
impedance factor magnitude, |8]. The relative dielectric constant &r=13.0.
(This 6] and its corresponding W were used to generate Figures 3.6 and 3.7.)

One observation is the low level of AX for a wide range of antenna heights and
ground types, especially when one considers the high reactance inherent to a short
(0.11) monopole. With respect to the AR curves, one observation is that as the
antenna height increases, more power is radiated, causing more power to be
absorbed by the ground, thereby increasing the resistive effects of the earth.

To further illustrate the ground effects on monopole impedance, the following
three-dimensional plots are presented. Figures 3.9 and 3.10 show AR and AX for a
quarter-wave monopole as a function of the ground factor magnitude and phase, 9]
and V. Here, |3] and ¥ were treated in the analysis as independent variables,
however, this is not actually the case. Therefore, there are portions of the curves at
the limits of |8] and ¥ that are not physically realizable. One can see in Figure 3.9 that
|9 affects the change in resistance appreciably, while the phase ¥ has very little
effect. The opposite is true for Figure 3.10, where V appears to have great effect,
especially for smaller values of |8|. This agrees with Maley's conclusions in [3].

19
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0.30

Figure 3.9: The incremental change in resistance for a quarter-wave

monopole as a function of |8} and , the ground impedance factor magnitude

and phase, treated as independent variables. (Note that sections of the graph
may not correspond to realizable ground parameters.)
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Figure 3.10: The incremental change in reactance for a quarter-wave
monopole as a function of |0 and y, the ground impedance factor magnitude

and phase, where |8| and vy are treated as independent variables. (Note that
sections of the graph may not correspond to realizable ground parameters.)

The plot was done with the y axis reversed for graph clarity.

Another method of presenting the data is to show the change in impedance
based on the ground parameters ¢ and €. Since the ground impedance is also a
function of frequency, 18 MHz was chosen to generate Figures 3.11 and 3.12. Upon
closer examination of equation (3.2), it can be shown that if the conductivity is
increased (or decreased) by the same factor as the frequency, then &' remains
unchanged, and the resulting ground impedance term stays the same. Therefore,
one could scale the plots shown in Figures 3.11 and 3.12 to the desired frequency by
multiplying the conductivity axis by the same factor as for the frequency change.

21




0.01 relative dielectric

0. 015 12 constant, €

conductivity, G (S/m) 0. 0210

Figure 3.11: The incremental input resistance of a quarter-wave vertical
monopole over an imperfect ground, as a function of the conductivity
and relative dielectric constant of the surface. Frequency = 18 MHz.
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constant, g
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conductivity, ¢ (S/m)

Figure 3.12: The incremental input reactance of a quarter-wave vertical
monopole over an imperfect ground, as a function of the conductivity
and relative dielectric constant of the surface. Frequency = 18 MHz.

Computer Modeling of a Vertical Monopole

To this point, the report has focused on AZ, the change in impedance from an
imperfect (Z) to perfect (Zo) ground. The next step is to predict what values of Zo one
can expect for a particular monopole. - This is accomplished by using the Numerical
Electromagnetic Code, or NEC [6], a user-oriented computer code for the analysis of
an antenna's electromagnetic behavior. A model of the antenna is constructed with
special lines of code in the input file to the program representing wires, patches,
antenna excitation, or the loading of the structure. The models may be assembled in
free space or over a uniform ground. -

One input requirement for the NEC computation is a particular operating
frequency (or set of frequencies) for the antenna. A representative frequency of 18
MHz was selected from the HF band, with the structures scaled accordingly. The HF
band was chosen because of the ease of modeling, and of existing test equipment
for that band. '
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Table 3.1 shows the results of the NEC computation of the input impedance for
a vertical monopole over a perfect ground. The input impedances of the same
antennas over an imperfect ground were generated with NEC by using a special
routine called the Sommerfeld-Norton method, which allows one to enter specific
values for the conductivity and dielectric constant of the ground plane below the
antenna. Ground constant values from measurements made at NRL's Waldorf site
were used to obtain the results shown in Table 3.2.

Antenna # Height (m) R (ohms) X (ohms)

1 (0.14) 1.667 4.79 -376.3
2 (0.154) 2.5 10.93 -202.8
3 (0.21) 3.333 21.38 -86.1
4 (0.251) 4.167 38.74 13.2

Table 3.1: The input impedance of a vertical monopole over a perfect ground at 18
MHz, as predicted by the Numerical Electromagnetics Code (NEC).

Antenna # Height (m) R (ohms) X (ohms)
1 (0.12) 1.667 124.67 -544.5
2 (0.154) 25 125.9 -360.1
3 (0.2A) 3.333 141.3 -249.1
4 (0.25)) 4.167 162.77 -156.87

Table 3.2: The input impedance of a vertical monopole over an imperfect
ground at 18 MHz, as predicted by the Numerical Electromagnetics Code (NEC).
Ground conductivity is 8.99 mmho/m, and €, is 12.51.

Examining the differences between the results of the two tables (AR and AX), it
can be seen that there is a significant difference between the values predicted for AZ
by theory and those generated by NEC. A contributor to the disparity between the
predicted and NEC-generated values of AX is that the ground constants used do not
quite meet Wait's criteria (that the propagation constant in the ground must be much
greater than that for free space) for the approximations used in the theory developed
in Section Il. In addition, the model was based on the antenna used in the
experimentation, which may not have been the best approximation of an
infinitesimally thin monopole, for which the theory was derived.
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Impedance values that were derived from the NEC model for the antenna over
perfect ground provided data that was very similar to the measured data. However,
the model over imperfect ground produced impedance values much different from
the experimental results. Because of the disparity between the calculated theoretical
and experimental results and those produced by the NEC model for the imperfect
ground, the NEC modeling over an imperfect ground was not pursued further. For
comparisons between perfect and imperfect ground, as well as between imperfect
ground and the effects of a ground screen (Section V), experimental' results for the
impedance of an imperfect earth are used.
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IV. Experimental Investigation of the Ground Effects on a Vertical
Monopole

Field measurements were performed to verify the computer-generated results
of the theories set forth by Wait [1]. Input impedance tests were conducted on vertical
monopoles at frequencies in the HF band during October 1990. The HF band was
chosen so that antenna and ground screen sizes would be small enough to be easily
handled, but not so small that slight imperfections in antenna construction would
affect the results. In addition, both conductivity and relative permitivity of the sites
measured stabilized between 5 and 30 MHz. Antenna measurements were
conducted over three surfaces: perfect ground, imperfect ground, and imperfect
ground with a radial ground screen. The work performed with the perfect and
imperfect grounds (no ground screen) is documented in this section. Measurements
taken over a radial ground screen are descibed in Section V.

A. Method

Measurements were conducted with four vertical monopoles of different
heights. To simplify the experimentation, none of the antennas were fitted with top
loading, i.e., wires extended from the top of the monopole (horizontally, or as part of
the guying assembly). Top loading is added to monopoles to increase the effective
height of the structure. In addition, measurements were done at a single frequency,
18 MHz. This was done so that the ground constants (dependant on frequency)
would be consistant for each antenna height , as well as for simplicity.

In preparation for doing antenna impedance measurements over an imperfect
ground, site surveys were conducted at three locations. The parameters measured
were the ground conductivity and the relative dielectric constant. These were.
measured at a number of locations at each site to gauge the variability of the ground
constants within the intended test area, and to see if those parameters met the
criteria set forth by Wait in [1]. These efforts were documented in Appendix B. From
these surveys, an NRL site located in Waldorf, MD was selected for conducting tests.

The impedance measurements were perfomed using a Hewlett Packard (HP)
model 4195 Network Analyzer. To measure the impedance of the monopole, it was
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necessary to place the test equipment at some distance from the antenna, so that the
presence of the network analyzer would not affect the performance of the ground
screen or couple with the antenna mast. The HP4195 has the capability to calibrate
out the effects of the coaxial cable, enabling it to measure the inpui impedance at the
base of the antenna automatically.

To make an antenna that corresponded as closely to the theoretical
description as possible (therby easier to model), the base for the test monopoles was
constructed of wood. The base was made up of a plywood square with four arms (2
by 4's) which were bolted together. A wooden dowel was mounted in the center,
over which the test monopoles were placed. The base connection was
accomplished with a hose clamp (which simplified the changing of antennas), from
which a wire was run to the center pin of a type-N coaxial connector. A ground strap
with an alligator clamp was attached to the shield of the connector for connecting the
coaxial shield to the ground plane.

B. Field Measurements

Monopole over "Perfect” Ground Screen

Since the focus of this report concerns the change in antenna impedance
between a perfect and an imperfect ground plane, measurements of monopole input
impedance were made above a "perfect" ground system at NRL's Brandywine field
site. This site consists of a large steel table mounted on a pedestal, which can be
lowered to the laboratory space underground. When the table is raised to be flush
with the surface, it connects to a large ground screen approximately 122 m (400 ft.) in
diameter. Seventy-two radials extend outward from the ground screen to a total
diameter of 304.8 m (1000 ft.). Excellent correlation between measurements made at
Brandywine and computer models of antennas over perfect ground has been
observed at frequencies above 7 MHz [9]. A diagram of the test configuration is -
shown in Figure 5.1. ‘
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Figure 4.1: Test configuration at NRL Brandywine Field Site. Ground Screen
comprises 1/2-inch mesh hardware cloth out to a 61 m radius, with 72 radials
extending to a 152.4 m radius from the table.

Four monopole heights were measured for input impedance at a frequency of
18 MHz, and the results are shown in Table 5.1. Measurements were taken using an
HP4195 Network Analyzer in the Network configuration. A full calibration was
performed on the 35 ft. coaxial cable before each set of measurements. Antenna #1
was a single section of 5/8" aluminum tubing. A single telescoping aluminum whip
was used to represent antennas #2-#4. This whip has a maximum height of 5.5 m (18
ft.) and a minimum height of 1.86 m (6.1 ft.). The various sections of the whip were
marked for each height to add consistency between the different sets of
measurements. The readings shown below were visually "averaged" from a number
of swept measurements for each antenna.
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Zin - Set 1 Zin - Set 2 Zin - Set3

# ight (m. R( X(Q
1 (0.13) 1.666 11.3 -318.0 10.5 -314.2 10.6 -313.6
2 (0.154) 2.5 17.2 -183.2 16.5 -181.5 16.5 -179.4
3(0.22) 3.333 23.15 -118.8 22.3 -117.8 22.4 -1174
4 (0.251) 4.167 48.7 10.9 48.4 12.15 48.1 12.55

Table 4.1: Three sets of measurements of the input impedance of a vertical monopole at 18
MHz over a perfect ground system at Brandywine, MD. The measurement Resolution
Bandwidth = 3 kHz.

Monopole Over Imperfect Ground

Measurements were conducted at NRL Waldorf Lower Field Site, on an open
field whose useable area was approximately 53 m square. Although the field was
much larger, the useable area was limited by trees, metal fencing and piping
beneath the ground. A diagram of the test site is shown in Figure 2.

Equipment Van

/D RG-213
Gas \

Generator / Ground constant measurements
n I‘— 9.75 m—>| were made at location of
Vo

antenna base.

Figure 4.2: Test configuration at NRL Waldorf Lower Field Site. Antenna
base at center placed on bare dirt. A ground strap connects the shield of the
type-N connector to ground. Metal fence is approximately 30 m distant
from center of circle.

A measurement of the grdund constants at the location selected for the
antenna base was conducted before the antenna was set up. The results of that
survey are given below in Table 4.2. The conductivity ¢ and relative dielectric
constant g were calculated using the method detailed in Section IV.
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FregMHz)  Xo(Q R X(© & O (mS)

17.00 -1250 49.35 -56.85 12.54 10.28
17.50 -1200 48.15 -55.4 12.34 10.43
18.00 -1135 46.85 -53.85 12.0 10.44
18.50 -1095 45.65 -52.35 11.88 10.65
19.00 -1060 4455 -50.7 11.80 10.94

Table 4.2: Results of a ground impedance survey at Waldorf Lower Field site on
10/12/90. Measurements of Xo, R and X were done with an HP 4195 Network
Analyzer and a Monopole Probe. The relative dielectric constant and conductivity
were calculated using the method outlined in Section IV. _

Recalling the constraint put forth by Wait for the ground impedance that M >> B,
given as equation (2.5) in Section Il

|,/ neo - coﬁu»:' >> 02 oty (2.5)

where the quantity on the left side is the propagation constant through the ground,
and the right side is the propagation constant through free space. Substituting the
values for 6 and & from Table 4.2 into equation (2.5), the ratio '/ was found to be
equal to 4.1, rather than 10 or greater, so the theoretical constraint was not met.
Since this area was the closest to meeting the condition of the three sites surveyed in
the local area, it was selected for the experimental measurements.

Once the ground measurements were completed, the antenna base was put in
place, and two sets of antenna measurements were conducted. The antennas
measured here were identical to those in Table 4.1, which were used at the
Brandywine site. The results are given in Table 4.3.
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Zin - Set 1 Zin - Set 2
Antenna # Height (m) R(Q) X(Q R() X

1012 . 1.667 740 -368.5 66.4 -362.0
2 (0.151) 2.5 81.5 -2123 765 -210.8
3 (0.2)) 3.33 95.2 -105.1  84.2 -142.4
4 (0.251) 4.167 1153 -108 1121  -10.9

Table 4.3: Two sets of measurements of the input impedance of a vertical monopole
at 18 MHz over an imperfect ground system at Waldorf, MD. Measurements were
taken using an HP4195 Network Analyzer in the Network configuration with a
Resolution Bandwidth of 3 kHz.

The goal is to compare measurements of monopoles with values calculated
using the theory set forth in Section Il. Table 4.4 shows the change in impedance as
calculated for a vertical monopole from an imperfect to a perfect ground, along with
the experimental results for AZ. The experimental values for AZ were taken from the
difference between Set 2 at the Waldorf site and Set 1 at the Brandywine site
because this combination gave the results that were closest to theory. Recall that AZ

=Z imperfect gnd. - z perfect gnd.-

Predicted AZ Measured AZ
Antenna # AR MX AR AX
1(0.13) 58.56 19.68 55.1 -44.0
2 (0.15)) © 67.1 20.24 59.3 -27.6
3 (0.23) 74.76 19.31 61.05 -23.6
4 (0.25)) 82.48 16.81 63.4 -21.8

Table 4.4: The change in impedance of a vertical monopole from over an
imperfect to a perfect ground, from theoretical predictions using the
theory from Section Il and antenna measurements. Base plate radius a for
predicted AZ = .0006A.

A comparison of the predicted and measured AZ shows that the values for AR are
relatively close, while the values for AX are quite different. Recalling Figure 3.5, its
predicted AX curve for the case of the poor ground is much different than the curve
for the good ground. Table 4.4 shows that when the ground conductivity goes below
the level defined in Wait's constraint (equation 2.5), the contribution of the ground to
the input reactance of the antenna departs from the theory presented here. From
Table 4.4, it appears that the ground at Waldorf contributes to the capacitive
reactance of the vertical monopole, rather than decreasing it as predicted in theory
(i.e., effectively contributing a negative rather than a positive reactance to the input

impedance).
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Given the values for the measured values for AR in Table 4.4, calculations were
performed to determine the lower limit of integration for the expression for AZ
(equivalent to the antenna base plate radius) that would produce an equivalent
computed AR for a particular antenna height. The base plate radius "a" used in
generating Table 4.4 is 0.0006\, equal to 1 cm at 18 MHz. This approximates the

radius of the aluminum monopole. The estimated "effective" base plate radii for the
four antenna heights examined are given in Table 4.5.

Measured Adjusted calc. Effective Base Radius

Antenna # AR AR AX (al\) (cm)
1(0.12) 55.1 55.08 18.38 0.00077 1.283
2 (0.151) 59.3 59.27 17.31 ~ 0.00105 1.75
3 (0.2)) 61.05 61.00 14.16 0.0016 2.667
4 (0.251) 63.4 63.5 9.68 0.0024 4.0

Table 4.5: The Effective antenna base plate radius (a/A) for a vertical monopole which
produces a computed AR identical to the AR measured in the field. The base used
in the measurements was non-conducting, and the radius of the monopole was
approximately 1 cm.

One suggestion for the difference between the effective base radii and the
radius of the monopoles measured is that as the antenna electrical length
approaches a quarter-wave monopole, its impedance approaches a purely real
value. As a result, the contributions from the input connector, hose clamp and
ground strap may become slightly more significant.

A number of factors contributed to the overall discrepancy between the
theoretical and experimental AZ's presented in Table 4.4. Some of these are
inaccuracy in the calibration of the network analyzer, transient behavior in the
coaxial cable, possible capacitive contributions when using the telescoping whip,
the effects of a non-homogeneous ground, and human error. [t should also be noted
that, due to equipment problems, the network analyzer was measuring the antenna
impedances in the Network configuration rather than the more accurate Impedance
configuration.
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V: Experimental Investigation of the Effects of a Ground Screen over an
Imperfect Ground on a Vertical Monopole

Experiments were conducted to verify the calculated results'(based on Wait's
theory in [3]) for the change in impedance (AZ) of a vertical monopole from over an
imperfect ground screen to over a perfect ground. Input impedance measurements
on vertical monopoles over radial ground screens and over a “"perfect" ground plane
were conducted during August of 1990. The following is documentation of those
efforts, which are then compared with the calculated results.

I. Method

The experiments were conducted to provide a set of data points comparable to
calculated results, so that a direct comparison could be made. The variables in the
experiments were the antenna height and the radius of the ground screen. To
simplify the measurements, no top loading was introduced, and the thickness of the
ground screen wires was held constant. The frequency of choice (as previously
stated) was the mid-HF band. There is a difficulty in doing any sort of field
impedance measurements because of the rather crowded and noisy
electromagnetic environment at HF (up through VHF). External electomagnetic
sources at the test frequency incident on the antenna can seriously affect the
measurement of that antenna's impedance.

In constructing a test antenna, a permanent base insulator was attached to a
circular aluminum plate approximately 1/2 m in radius. The monopoles were hollow
aluminum rods cut to proper lengths; these were then mounted to the base insulator.
This allowed the changing of antenna heights while leaving the ground screen under
test undisturbed. A number of antenna heights were used, along with different
frequencies, so that a number of data points could be taken without having to change
the physical length of the ground radials frequently. The monopole heights used -
were .1\ and .05\, and were represented using four different antennas at two
different frequencies. By changing the length of the ground radials once, four data
points for each representative ground screen could be obtained. An outline of the
testing conducted is given in Table 5.1.
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Ant. Antenna height Screen radius Frequency

# () (m) () (m) (MHz)
1 0.1 2.5 0.2 5.0 12.0
0.0667 1.667 12.0
2 0.1 1.667 0.3 5.0 18.0
0.1 1.667 18.0
3 005 1.25 0.2 5.0 12.0
0.0667 1.667 12.0
4 0.05 0.833 0.3 50 18.0
0.1 1.667 18.0

Table 5.1: A listing of the antennas used in the mohopole impedance tests, with their
physical and electrical heights and the general frequency at which they were measured.

The Waldorf site was bounded at one end by a metal fence, and the test
monopole was set up at least one wavelength distant.

The test equipment used to measure the impedance of the monopole was
placed 18.3 m from the antenna, so that its presence would not affect the
performance of the ground screen or couple with the antenna mast. Two methods of
impedance measurement were used: one required an HP4195 Network Analyzer,
and the other method used a General Radio RF Bridge (GR bridge) along with a
signal source and a detector. The HP4195 has a capability to calibrate out the
presence of the coaxial cable, enabling it to produce the input impedance at the base
of the antenna automatically. The GR bridge had no such capability, and theoretical
methods were required to transform out the effects of the cable on the measured
impedance. It was hoped that the GR bridge would provide the accuracy and
resolution needed for the resistive part of the impedance, and that the HP4195 would
give similar accuracy for the much larger reactive part of the impedance.

Two different methods were attempted for "deimbedding" the impedance

- measurements made with the GR bridge. These methods used distributed
parameters to transform out the effects of the coax on the measurement.
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Method 1:

The distributed parameters (resistance, conductance, inductance and
capacitance per unit length) of a coaxial cable are caiculated from the following:

_ [fMe 1.1 _ 2nOEE tand
1= s (2t = “in(bla)
_ Mo _ 2NWE £,
L= op In (/) = In(bla)

where a and b are the inner and outer conductor radii. The units are mks, and the
unit length is one meter. '

From the these distributed parameters, one may calculate the complex
propagation constant Y and the characteristic impedance, Zo:

Y= J(r +joL) (g +joc)

7 = [I*rioL
g +jmc

0

These values are then inserted into the following expression for the antenna input
impedance, which uses the ABCD (also called cascade or transmission) parameters
for a lossy transmission line of length I: ‘

_ Z.n cosh(yl) - Z, sinh(yl)
" (Z,JZ)sinh(y1) - cosh(yl)

Method 2:
The distributed conductance and resistance of the coaxial cable are found by

using the Loss(dB)/100 ft. data supplied by the cable manufacturer at two
frequencies close to the frequencies of measurement. Beginning with the expression

35




for the variation of the propagating wave:

V= exp[—;(—g—ﬁ +gZf) 1]

where:
1 = length of line
f = frequency
r = resistance/unit length
g = conductance/unit length

Taking the log, we develop an expression for the power variation in dB:

P (dB) = 20 log, exp[—%(—ZR—v’? +gZH1])
P (dB) = 20 log(e) In (exp[—;—(o%—ﬁ +gZH1])
P (dB) = -10 log(e) (%ﬁ: gZH1
Loss (dB) = + 10 log(e) (%J? +8Zf)1

Loss (dB)/ 1 = K(Z&ﬁ' +gZf)
(3]

where K equals 4.343. Entering a value for the loss per unit length at two different
frequencies produces two equations with two unknowns (r and g), which can be
solved simultaneously.

To obtain the inductance/unit length, one uses the formula from Method 1.
The capacitance/unit length is also given in the cable manufacturer specifications. In
the case of RG-213 cable, (the cable used for these measurements) the calculated
value for ¢ from Method 1 was close to the number specified by the cable
manufacturer, Belden Wire & Cable.

36




|. Field Measurements

Monopole over "Perfect" Ground Screen

Antenna measurements for the case of a perfect ground were made at the
Brandywine Field Site, where there was a large steel table mounted on a pedestal
(with laboratory space below) connected to a large ground screen approximately 122
m (400 ft.) in diameter. While at Brandywine, it was discovered that NRL's Network
Analyzer (the HP4195) could only make measurements using the Network
configuration, which gave impedances in addition to reflection coefficient data.
These values are shown below with impedance measurements obtained by using
another HP4195 operating in the Impedance configuration, which is a much more
appropriate mode for this type of measurement. This second analyzer belonged to a
contractor operating at Brandywine at the same time, but was only available for a
short period. Therefore, data were only taken with two antennas using the network
configuration. Those results are given below.

Frequency Input Impedance (R + jX)(Q2)
(MHz) Anti(25m Ant. 2 (1.67m nt. 3(1.25m) Ant. 4 (0.833m

8.0 2.91 - j394.25 2.50 - j506.45 2.75 - j593.5 3.1 -j719.40
12.0 4.15-j278.80 3.31 - j372.20 3.7 - j438.91 4.8 - j537.65
15.0 5.30 - j201.58 3.33 - j285.70 2.7 - j[340.60 3.1 - j419.82
18.0 7.47 -j146.27 3.99 - j225.05 3.1 -j274.65 3.4 - j340.80

Table 5.2: Input Impedance of a vertical monopole over a perfect ground screen.
Measured at NRL Brandywine Field Site, using a HP4195A Network Analyzer in the
Impedance configuration. Values are visual average of ten or more measurement
sweeps. Resolution Bandwidth=3 kHz
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Frequency Input Impedance (R + jX) (Q)

(MHz) Ant1 Ant. 2 Ant. 3 Ant. 4
9.0 - 5 - j498 (+/-2) - 8-j703 (4)
12.0 - 3.3 -j365.5 (+/- 1.2) - 4-i522 (4)
15.0 - 4.5-i284.4 (+/- 1) - 6 - j415.5 (3)
18.0 - 4.2 - 225 (+/-.4) - 3.5-j340.3 (2)

Table 5.3: Input Impedance of a vertical monopole over a perfect ground screen.
Measured at NRL Brandywine Field Site, using a HP4195A Network Analyzer in the
Network configuration. Values are visual average of ten or more measurement sweeps.
Numbers in parenthesis are the maximum normal variation of the measurements.
Resolution Bandwidth=3 kHz

The values from both analyzers are quite close when considering Z as a whole.
However, there are some big differences in R, especially at the lower frequencies.
Differences of more than one ohm in the impedance could introduce an appreciable
error when calculating AZ. This can be attributed to X being very large compared to
R, so that a very small variation (<2%) in a magnitude and/or phase measurement
can seriously affect the resistive component of the impedance. Because of the
conditions and the nature of the impedances of vertical monopoles, the NRL analyzer
was deemed acceptable.

In Table 5.4, the results of the antenna measurements using the GR bridge
configuration are given, using Methods 1 and 2 for deimbedding the input
impedance. These are listed alongside the NEC predictions of impedance for the
equivalent antenna at the same frequency. Note that the original NEC impedance

predictions were calculated to be in parallel with the capacitance of the monopole
 base (approximately 16 pF), producing reactances quite similar to the values listed in
Tables 5.2 and 5.3 taken from the HP4195.
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Antenna Frequency Method 1 Method 2 NEC Model

g (m  (MHz) (2L.W) (2L W) (2. W)

1 (2.5) 12.01 53.66 + j825.76  123.99 - j506.82  2.11 - [266.74
2 (1667) 18.02  509.64-j3022.9 34.8-]229.48  1.81-[222.41
3 (125  12.01 61.51 + j839.5  123.44-j500.9  0.33 - j418.22
4 (0.833)  18.00 545.1 - [2894.5  35.2-[229.17  0.26 - 330.07

Table 5.4: Input Impedance of a vertical monopole over a perfect ground screen.
Measured at NRL Brandywine Field Site, using a General Radio RF Bridge. Results were
obtained by transforming out the effects of the 35 ft. length of coaxial cable between the
Bridge and the antenna. Method 1 used the cable's dimensions to calculate the
distributed parameters, while Method 2 used values from the attenuation and
capacitance data provided by Belden Wire.

Comparing with Tables 5.2 and 5.3, Method 2 appears to be more successful
than Method 1. Additionally, the NEC model tracks quite well with the network
analyzer measurements. It is believed that the same difficulty in resolving such a
small resistive component from the network analyzer was also a factor in the NEC
analysis.

Monopole On Radial Ground Screen Over Imperfect Ground

Measurements were conducted at NRL Waldorf Lower Field Site, the same
site used for the measurements over imperfect ground with no ground screen. A
diagram of the test site with the ground screen added is shown in Figure 5.2.

49 radials, #14 wire staked
o “~._ down at ends, connected
with wing nuts to base plate

N
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™. _,--/ to lay flush on ground
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o

Figure 5.2: Test configuration at NRL Waldorf Lower Field Site. Antenna base at
center placed on bare dirt. Metal fence approximately 30.5 m distant from center
of circle.
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Two different lengths of RG-213 cable were used, since some antennas
proved impossible to measure when using the GR bridge. A metal shielded coaxial
low-loss cable was also tried, but the impedance measurements were too sensitive
to the cable's position and to any physical contact made with it.

Site preparation took approximately a day and a half. The site is an unused
open field of grass which is cut once a month, so clearing a 18.3 m circle was
required in order to get the ground wires as close to the surface as possible. A patch
in the center was cleared down to bare dirt, and ground constant measurements
were made from 8 to 20 MHz. These measurements were repeated the next
morning, then the base was laid down and the ground radials were staked out. The
initial radius of the ground screen (measured from the center of the plate, not the
edge) was 5 m (see Table 5.1). The wires were also pressed to the surface of the
ground around the base plate by using unfolded paper clips.

Over the next two days, measurements of the input impedance of the various
monopoles (as listed in Table 5.1) were taken, using both the network analyzer and
the GR Bridge. Problems occured while using the GR bridge. One problem was that
the length of coax would transform the impedances at 18 MHz to values that
exceeded the measurement capability of the GR Bridge. ‘This required switching
cables and re-calibrating the bridge. A second difficulty was the necessity of
repeating each measurement a number of times. As the day progressed, the noise
and interference from signals on or near the same channel would increase, making
the nulls less sharp. Eventually, the data collected using the bridge were deemed
unacceptable, and only the resuits taken from the network analyzer were
documented.

Measurements with the network analyzer of the input impedance of the
monopoles in Table 5.1 over two different sizes of ground screens are given below in
Table 5.5. Table 5.6 gives the resultant AZ's from the network analyzer
measurements over both perfect and imperfect ground, and these can be compared
to Table 5.7, which shows predicted AZ for the same configurations using the theory

in Section |Il.
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Ant. Ant. height Screen radius Frequency  Input Impedance

$ ) (m ) (m)  (MH2) RQ) X(Q)
2 01 1.667 0.3 5 18.0  4.05 (25) -215.65
1 01 25 0.2 5 12.0 3.4 (4) -2755
2 01 1667 01 1667 180 525 (.35 -255.85
1 01 25 0.0667 1.667  12.1 6.25 (5) -275.8
4 005 0833 0.3 5 180  3.15 (4) -3385
3 005 125 0.2 5 12.0 15 (7) -399.0
4 005 0833 01 1.667 18.0 26 (6) -340.6
3 0.05 1.25 0.0667 1.667 121  4.85 (1.0) -429.0

Table 5.5: Measurements of the input impedance of a vertical monopole over an imperfect
ground at Waldorf, MD. The measurements were taken using an HP4195 Network Analyzer
in the Network Configuration. The variation in resistance values are shown in parenthesis.

Ant. Ant. height Screen radius Frequency AZ = Zimp -Zper.

# (A (m) () (m) (MHZz) AR AX
2 0.1 1.667 0.3 5 18.0 0.06 9.4
1 0.1 2.5 0.2 5 12.0 -0.75 3.3
2 01 1.667 0.1 1.667 18.0 1.26 -30.8
1 0.1 25 0.0667 1.667 12.1 2.1 3.0
4 0.05 0.833 0.3 5 18.0 -0.25 2.3
3 005 1.25 0.2 5 12.0 -2.2 39.9
4 0.05 0.833 0.1 1.667 18.0 -0.8 0.2
3 005 1.25 0.0667 1.667 12.1 1.15 9.9

Table 5.6: The change in the measured input impedance from a vertical monopole over
an imperfect ground to the same antenna over a perfect ground. Waldorf measurements
were taken using an HP4195 Network Analyzer in the Network Configuration, whereas
measurements taken at Brandywine used an HP4195 in the Impedance configuration.

Ant. Ant. height Screen radius Frequency AZ = Zimp.-Zper.

# (A (m) (A) (m) (MHz2) AR AX

2 0.1 1.667 0.3 5 18.0 1.049 1.535
1 0.1 2.5 0.2 5 12.0 1.136 1.316
2 0.1 1.667 0.1 1.667 18.0 2.554 0.344
1 041 25 0.0667 1.667 12.0 4256 0.541
4 0.05 0.833 0.3 5 18.0 0.316 0.640
3 005 1.25 0.2 5 12.0 0.348 0.693
4 0.05 0.833 0.1 1.667 18.0 0.741 0.337
3 0.05 125 0.0667 1.667 12.0 1.315 0.497

Table 5.7: The change in the input impedance from a vertical monopole over an
imperfect ground to the same antenna over a perfect ground, as calculated from

expressions in Section |l using Mathematica®.
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Regarding the values for AR in Tables 5.6 and 5.7, the measurements are too
varied to provide any correlation or verification of the theory, although they are close
in magnitude. With the variation in the measurements of the antenna systems at
Waldorf ranging from +/- 0.25 to +/- 1.0 Q, the relative similarity between the AR
values in both tables (+/- 2.1 in the worst case) is slightly supportive of the
computational method.

The calculated AX vs. experimental AX showed almost no correlation between
theory and measurements. One should note that the ground conditions for Waldorf
on 8/3/90 did not meet the criteria (equation (2.5), Section 1l) for application of the
theory to this problem. Due to the correlation between the predicted NEC values for
the input impedance of the four monopoles over perfect ground and the measured
values of the same antennas at Brandywine, one suspects (as in Section 1V) that the
predicted AX is affected detrimentally by the poor ground conditions. The
discrepancy between the required and acutal ground conductivity for the theory are
believed to be a significant cause of the poor correlation between the theoretical and
experimental results for AX.

It should also be noted that the field site selected at Waldorf had metal
structures (as well as the measurement equipment) within 2 wavelengths of the
antenna being tested. Although the electrical height of the antennas were quite
short, there may have been some effects from coupling to these extraneous
conductors. It should be noted that the same test bed configuration (antennas, base,
coaxial cable and network analyzer) performed quite close to theoretical predictions
at the Brandywine site, where there were no extraneous structures or equipment
even close to the antennas being tested.
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VI. Conclusions

It was determined that the equations for the input impedance of a vertical
monopole provided by Wait are rather strictly limited to the "good” ground case, i.e.,
ground with a high conductivity. It was determined by experiment that a good
ground rarely occurs in areas near to the Potomac River, in Virginia or Maryland.

The following guidelines for using a ground screen for a vertical monopole
are presented below:

1) A practical radial length is 0.3\ for monopoles less than A/4 in height,
as suggested by Figures 3.3a and 3.3b. In general, the radial length
should exceed the monopole height.

2) The number of radials can have a profound effect on AR, AX when the
ground is poor (i.e., low conductivity). In general, using the largest
number of radials possible is recommended, although one suffers
diminishing returns after 200 radials.

3) If the ground constants do not meet the criteria in equation (2.5), the
expressions in Section Il will not apply. A ground screen is even more
essential for the case of a “poor" ground.

Although not illustrated in this report, it has been demonstrated [5] that
increasing wire radius contributes little to the effectiveness of the ground
system.

Impedance measurements at HF were made difficult by ground imperfections
and a crowded electromagnetic environment, coupled with an input impedance with
a phase approximating 90° (inherent to vertical monopoles off resonance). Future
investigation is suggested to develop a theorectical expression for Z that does not
require such a high ground conductivity. Comparisons could then be made with data
herein and with NEC model predictions.
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Appendix A:
Theoretical Development of the Impedance of a Monopole due to
the Presence of a Lossy Ground.

The following derivation of the input impedance of a vertical monopole
over an imperfect ground parallels the original work done on this subject by
Wait and Pope [3]). The effects of top loading are treated simply as an increase
in the height of the monopole. '

The theoretical development of an expression for the impedance of a
vertical monopole begins with Maxwell's Equations. The Hertz Vector Potential
T is used to derive the general radiated field expressions. This Hertz Vector
Potential was used in this capacity by Wait and Pope [3] and earlier by
Sommerfeld [2]. The short dipole Hertz vector is the basis for our potential
expression, and the vertical monopole is treated as the superposition of these
dipoles. The expressions derived for the input impedance of a vertical
monopole are evaluated numerically in Section .

1. Background
Introduction of the Hertz Vector Potential

In the following, we develop the wave equation for the Hertz Vector
Potential (also referred to as simply the Hertz Potential) and its solution. Note
that this derivation is for isotropic, homogeneous media.

It was shown by Hertz that one can define an electromagnetic field in
terms of a single vector potential function when the currents satisfy the law of
conservation of charge. This function, the Hertz Potential, 11, can be used to
obtain the general vector and scalar potentials with the following relations:

K:%- (A.1.1a)
C

2|

d=-VeIl (A.1.1b)
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Faraday's Law is then used to define the electric field vector E:

An expression for E is found using (A.1.1a) and (A.1.1b):

- _ 2=
E =V(VoH)-%§_I; (A.1.2)
c” ot

The magnetic field, Fi, can also be expressed in terms of the Hertz
Potential:

uﬁ:VxK
o lyy 1ol
H= gV =%
ﬁ:e%(Vxﬁ) (A.1.3)

The expressions in (A.1.2) and (A.1.3) are substituted into the following
expression from Maxwell's equations (for a source-free region):

o aD
VxH-£2 =0 '(A.1.4)
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where D is the electric flux density, D =¢E.

V x e—(Vxﬁ) el [V(V H)-C—aaT)ﬁ]=O

9 VXVXﬁ-V(Voﬁ)q.L.a__ﬁ =0
ot c2 at2

which, after integrating, gives the expression:

VxVxTi- V(V e l'I) + —Q——ll = constant function (A.1.5)
c? o of the space
coordinates

The value of the constant makes no difference in the determination of the field
term, so it is set equal to zero.

Using the vector identity Vi = V (V « T) - V x V x I, (A.1.5) becomes

2= 2
VI - lz_aan =0 (A.1.6)
which is the wave equation for the Hertz vector. With an assumed time
dependance of e ® and operating in the spherical coordinate system, (A.1.6)

can be reduced to

V. Ti=0 (@=0) (A.1.7)

where:

&
]
b
¥}
i
-,
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and Y is Wait's notation for the propagation constant [3]. The solution for the Hertz
Potentia! T in the general spherical wave case (with a unit, 2 polarized, dipole
moment source at the origin) is:

T 1 cike-op
M=, —e 2 (A.1.8)

In the derivation that follows, the Hertz Potential is defined using the
convention of a positive phase term,

=_ 1 _jkr-at
= 41— 1.
s © 2 (A.1.9)

which results in slightly different expressions for reactances. Equation (A.1.9)
was used to keep the derivation as close as possible to the work done by
Sommerfeld. When returning to Wait's development, and when referring to the
input reactance of an antenna in later sections, the convention of a positive
reactance being inductive and a negative reactance being capacitive will be
used.

The Scalar Wave Equation for the Magnetic Field

Beginning with (A.1.5), (with the constant equal to zero), the curl of both
sides is taken, and the vector E =V x 11 is introduced:

= = 1y, 0T
VxV(V-H)-VxVx(VxH)-TVx—éT =0
c t

For any scalar function ¢, V x V¢ = 0. Therefore, the first term drops out of the
above expression. Taking the second time derivative in the last term:

O-VxVxE—fﬁ=0

-V(V+B)+VB- ¥B=0
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Since the divergence of a curl equals zero, the first term drops out, leaving:
VB-y¥B=0 ' (A.1.10)

Taking the time derivative of both sides and dividing through by ucz, (A.1.10)
becomes:

ch En 2 (v ﬁ)'EEZ o 2 of)=0
V2 uzat(Vxn)] yz[ VxH)] 0
C
VH-vH=0 (A.1.11)

In order to parallel the work done by Wait [3], equation (A.1.11) needs to
be reduced to the form of a scalar wave equation. Such an expression can be
derived for the particular case of the vertical monopole. The Hertz field for a
vertical monopole can be written as M= I1, 2. Converting to the equivalent

magnetic field expression, one finds that H= H, 8. Utilizing cylindrical
symmetry, one may further assume that H= Hy(p,2) 8. Therefore, (A.1.11) may
be developed as follows:

V(V.H)-Vx Vx ﬁ'-ﬁi:o

H=19% _19
VOH--p a¢a b 30 (H¢(pz)) 0 (A.1.12)
H A
VXH¢ =-'a—z¢6+aap<pH¢)Z
- oH, 1 8\ 4
e PP Y
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%H,
=-p[L e %(%—H

% 2 (A.1.13)

Substituting (A.1.12) and (A.1.13) into (A.1.11), one obtains the following:

VH-YH= -VxVxH,5 -YH, 8

2
d°H,
= BI—2 —( H¢)+ 2 -TH,)
dp
_r1 9 , oH, 9 H
=[5 5 ® % )+ -YH,]1$=0 (A.1.14)
2
. . . 1 9°H,
Since Hg is not a function of @, one may add the term B—; 352 8 to
(A.1.14), which reduces it to the desired scalar wave equation:
*H, - vH, =0 (A.1.15)

Note that equati'on (A.1.15) is not satisfied by Hg in the general case when
Ho is dependent on @.

2. Determining the Input Impedance for a Vertical Monopole

This follows the miethod for obtaining the input impedance of a vertical
monopole over an imperfect ground used by Wait [3].

The development begins with a simple vertical antenna element along
the z-axis of height h, situated above a ground half-space, as shown in Figure
A2.1.
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€M, (@in)

Vi ’
B A
€, I, 6 (ground)

Figure A.2.1: The representation of a vertical monopole over an
imperfect ground. The monopole is just above the ground plane.

The propagation constant (¥) and the characteristic impedance (M) of the
imperfect ground are given as: '

Y= {JOI(OC + jwe)
_ [_Jou
n= jwe+ 0

For free space (and air), these two quantities are defined as:
Yo=jo/E; ==} 2E

[ Ho
No = e_o

Note that K =L, is assumed throughout this paper, which is the case for normal
soil with little inherent magnetization.

The antenna's self-impedance is separated into two parts,
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Zr =ZO+AZT (A.2.1)

where Zt is the total input impedance, and Zg is the input impedance of the

same antenna over a perfect ground. AZt represents the difference between
the perfect and imperfect ground scenarios. One may think of the perfect
ground case as an infinite ground screen.

Wait's paper focused on the definition of AZT , and then applied this
factor to both the lossy ground and the imperfect ground screen problems. The
following is a detailed outline of that development, using information from
Sommerfeld [2] to complete some involved portions of the mathematics.

The total flux emanating from a cylindrical surface surrounding the
antenna is given as:

F= jﬁ xH e fds (A.2.2)
S
h

=-gi_%21tp6[EzH¢dz

The limit p — 0 is taken assuming the antenna is an infinitesimal vertical

element, so that the only integration is over the sides of the imaginary cylinder,
with i = p. The negative sign is included because the flux is assumed to be

radiating outward.

An expression for E is taken from Maxwell's Equations:

H=1E
VxH= M E
_M.1 49
EZ =5 [——p ———ap (pHy)] | (A.2.3)

The Hg can be found using Ampere's law for a symmetrical cylindricél
conductor (quasi-stationary case):
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JH-d
2n
jH,,pdgs = ,,pjd;a =1
H,=-1 (A2.4)
Altemnatively, fix (ﬁ2 - ﬁl) = fs leads to the same result.

Using (A.2.3), (A.2.4) and Ohm's Law, one gets an expression for the
input impedance Z .

JE_ 1
z=5 =% tm lim, [E,1) dz (A2.5)
' o o 0

The electric field can be expressed as E, =E; + EsZ , with E; being the

electric field over a perfect ground and lfz being the change in the field which

accounts for the effects of the imperfect ground and ground system. Therefore,
using equations (A.2.1) - (A.2.5), one may express the input impedance
increment AZt as:

h
ol g
AZr—[-I—z‘[EZI(z)d'z]gi_%

00

Az, =[-8 j{p L o H) 10 ], (A.26)

0
ooo p=

The values 1, and Yo are used because the integration takes place in free
space, and any ground effects on the antenna impedance are incorporated into
the H, term. '
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To obtain H:, , one first solves the wave equation for the Hertz potential,
then converts that solution to the magnetic field expression desired. The
solution is taken from Sommerfeld [2], whose solution assumed a potential of
2 (written as I1,) for a vertical dipole along the z-axis. The Hertz wave
equation from equation (A.2.7) is:

VL +KT,=0 (r#0) (A2.7)

where ik = v, or X = 72 The derivation of the primary (radiated) field is
begun by representing the solution of (A.2.7) as a superposition of
eigenfunctions (u) with eigenvalues (X). Incorporating the cylindrical symmetry
of the vertical monopole problerh, the eigenfunctions will take the form of Bessel

functions, with the index n = 0. The general field solution for a cylinder of height
his:

= ing o MNZ i
u_=I,(Ar) " cos o m,n € integers

u,, = I, (Ar) cos _mﬁng

Here, r is used instead of p as the radial component, to be consistent with
Sommerfeld's notation. Once an expression for I1, is obtained, the derivation
reverts to the original notation used by Wait [3]. Sommerfeld then replaces the
index mn/h with p (which has no relation to the permeability), and the solution of
(A.2.7) becomes:

u, =L An)cosflz  where L =V k- A2 (A.2.8)

The cosine function meets the boundary conditions for the top and
bottom of a circular cylinder. However, for the development of a vertical
monopole solution, there is no such boundary condition on the upper half
plane, so one can replace the cosine function with an exponential:

u =LA e ™  where p=vAZ- K (A.2.9)
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The expression for p is found by substituting u, into (A.2.7) for I1; . Since the
vertical monopole is assumed to only produce the Hertz field along the z-axis,
the expression for [1, encompasses the entire solution, and can be referred to
as 1. From (A.2.8) and (A.2.9), the solution for I takes the form:

= I FO) LA e "™ dAh (z<0) (A.2.10)
; |

The solution is expressed as an integral combination of eigenfunctions because
of the infinite number of eigenvalues present when dealing with an unbounded
case, such as the upper half plane.

To solve for the coefficient F(A), one sets (A.2.10) equal to the spherical
wave expression (in cylindrical coordinates) for the unit Hertz dipole potential
below (Note: Sommerfeld assumed that the factor 1/4n was accounted for
through the choice of units):

eij 2 5
= = where R =z% + 1# (A.2.11)

Setting (A.2.10) and (A.2.11) equal and setting z equal to zero, one ends
up with the boundary condition:

.kr ©0
EJr_ - J’ F\) I,(Ar) dA (A2.12)

Using the double Fourier integral expression (from [2], section 21B):
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f(r) = [ o do [ £(p) I(or) I(op) p dp
0 0
or: f(r)= j ¢ do ¢(c) I(or)
0
with 9(0) = [ p dp f(p) 1(p)
0
Setting f(r) equal II:

f(r) = j ¢ do ¢(o) I, (or) = _[ F(A) I,(Ar) dA = 91;2
0 0

¢(0) = [ p dp (p) I(op)
Oeo eikp

= Jp dp 5 Lo(op)

0

SO

f(r) = Io do {I eikp I,(op) dp} 1,(or)
0 0
Let o=A:

f)= [Adh ([ € L) dA} L(r) = [ FQV) I(Ar) dA
0 0 0

Therefore, F(A) = A ¢(A), and:

FO\) =\ I e L(Ar) dr (A2.13)

To co'mplete the solution for F(A), we use the explicit integral expression
for the Bessel function ([2], equation 19.14):
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i jn(w - w/2)
I(n)= -21? je" cosW e dw

n

. jr cosw

@) =5 _1[ e % dw  we Real
Substituting the variable Ar for r in the above expression for n=0, this is
then substituted into (A.2.13) to give:
T 1 [.h

- jkr _1 jAr cosw

F(l)-lé[e’ 27‘.'7[61 dw dr

oo

n
_ A jr (k + A cosw)
FQA) = oy _-Idw j e dr

= jom J‘k+?\,cosw (4.2.19)

The solution for this integral can be found using the following identity:

(a-bytan @)
= - an! (———2}  [@?>b))

a+bcosx ‘/_ ‘/——

which requires that k% > A2. Requiring p to be complex with a positive real part,
we can see from its original deﬁnition in (A.2.8) that k? must be greater than A2.
The solution for F(A) is:

F(A) = LY S %; where p.=\/7\.2-k2 (A.2.15)

WK2-a?

From (A.2.15) and (A.2.10), the solution for the Hertz Potential is found to be:
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= [1,n) e ™ % dA (A.2.16)
0

Using equations (A.2.3) and (A.2.9) (and substituting the notation of J for
| for the Bessel function), one may use the above expression to develop the
eigenfunction solution to the wave equation for the tangential magnetic field:

Hy o) = [1,00e " f0)Adh 220
] |

where f(A) takes into account the secondary (reflected) field, the 1/u(})
term, and the constants that result from converting [1 to Hg. The Hy term
represents the change in the radiated tangential magnetic field due to the finite
conductivity of the earth (and the ground system, if any).

Converting Hp to Wait's notation, a time dependance of e*/*'is

assumed, and one replaces Ar with Ap and k2 with -Y2. Since we are dealing
with the upper half plane (air medium), we replace p with p, where U, is

defined as U, = (7»2 + Yﬁ)m. Utilizing Wait's notation produces the following
expression:

Hi(p,2) = j LGp e fMA A (220) (A.2.17)
0

which is identical to equation (35) in [3]. Recall that for this development only,
Ko, like , is an index, and not the permeability of the ground. From (A.2.17),

one may find the electric field tangent to the ground plane:
dH,
Z

_MdH, _ Mo [
Ep(p,O)— Y3 Lz To JJI(Kp) f(A) p.o?,\,dl (A.2.18)

=0

where f(A) is defined by the inverse Fourier relation:

A.14




f(A) =

p(pv,o) pu dpv

Substituting f(A) back into (A.2.17) results in the following expression:

S ( - z YO ( L]
Hy(p.2) = [3,00p) ¢ **{- J,(Ap") E5(p'0) p'dp' } AdA
6[ Mo ”05[ | (A.2.19)

This expression is then substituted into (A.2.5), with AZt hereafter
referred to as AZ:

p —0

h
AZ = - I%J-[ { = PJ,(Ap) eI A 7\.} Jl(?\,p')Ep(p"O)p'dP;l I(z) dz
00 Ho

Using the recursion relations for the Bessel function:
i] (Ap)=A -—I—J (kp)+i (Ap)
op ! P Ap 1 ©

d . 91,(Ap)
$0J,(7~p)—p 3 +J,(Ap)

=p(- 5 1,(p) + M, ()] +1,(Ap)
=ApJ (Ap)

ApJ (Ap)

. 1|9 Y
lim p[ap ® Jl(xp))] lim

p—0

AZ is rewritten as:

hf" ooco 2 ’
AZ:IH'[J' o 7~ - dA 3,(p) Elp O)pdp]l(z)dz (A.2.20)
0 00
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Using:
1 93 (Ap")
1,0 )"I ap

and Sommerfeld's integral expression:

Bz _;L ) _e
e i 00 dh=

equation (A.2.20) is reduced as follows:

h e T Y
Az=._1E J 6[ L[J J(Aphe ﬁ:dl} E,(p'.0)p'dp'I(z)dz

1’50 9P
h e Y @2+ p?
1 d e °
== | | s5———— E,(p,0)pdp I(z) dz
L JJap JzZ2+p? P
R Tt
=Ll EpoTrdld
2 ap 2 P
Ibo o 2 +p
AZ=-II—2 J’ H3(p,0) Ey(p,0) 2mp dp (A.2.213)
0 0

where H;(P,O) is the tangential magnetic field at the boundary for a perfect
ground plane:

h oo @ +p?)'?
H(p.0) = - ﬁ J' aa—p s 1(z) dz (A.2.21b)
0

Equation (A.2.21b) can be found in [3] and [9], but no explanation is
given. Note that the integrand of (A.2.21b) is quite similar to the basic field
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expression for the Hertz potential (A.2.8), with the radial distance r being
replaced by (22 + pz)m, and the entire term being weighted by the current over

the length of the antenna. All ground effects are assumed to be incorporated
into the Ep(p,0) term in (A.2.21a).

Heretofore, no assumptions have been made about the current on the

antenna. The current is now assumed to be a sinusoidal distribution, with no
variation with respect to p (i.e., an infinitesimally thin antenna). Wait defines the

current as:
I(z) =1, sin(a - Bz) / sinat

where o =B(h + h'), h' being an additional height factor due to top
loading. Integrating (A.2.21b) with the above current produces the following
result: '

; - jBr -iBp th o iBr
=(0.0) = - o[£ ) - coso- €T in (o -
H (p,0) = T [ 5 cos(Bh - o) 5 cosol 5 Sin (o Bh)]

(A2.22)

with r = (22 + p2)1/2.

The expression for the electric field in the earth surface is evaluated next,
to establish the boundary conditions at the earth-air interface (z=0). The electric
field near the surface takes a form similar to (A.2.18), with:

Ep(p2)=- [nI,(p)e™ “py dh ;z<0

<3
Ot—,g

' 2
A binomial expansion is done on W = A+ 72)1/2:

n(n-)a"? ,

(a+x)"=a"+na"x + 51 X“ + ...
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2
- A, LAy
p,._'y|:1+2 + 8(7) +]

and the tangential electric field in the ground (z%O) becomes

Ey(p.2) =- %[ J 73,(Ap)e *p(MAdA + J 2LY 1,0 WA M + ]

Since the Bessel functions are used in the solution, each function
individually solves the wave equation:

(V- A) J,(p) = 0

Using the above expression, Ep is simplified to:

—-mH.-N (0139
E,(p.z) = - H, - (ap 530 ° H,,Ji HOT.  (A223a)

,YZ

with
H,(p.2) = J' J,00) ¢ pA) L dA 52<0 (A.2.23b)
0

which equals the total tangential H in the presence of the ground screen.
("H.O.T." is an acronym for higher order terms.)

In [3], Appendix I, Wait claimed that if the propagation constant ¥ of the
ground is large enough, and if Hy varies slowly with respect to p, then only the
first term of (A.2.23a) is significant. The first constraint is equivalent to requiring
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that the ground displacement currents are an unimportant factor in the
impedance calculation. At the surface, (A.2.23a) is reduced to:

E,(p,0) = - N Hy(p,0) ' (A.2.24)

where 1 represents the surface impedance of the air-ground interface. Wait
also states that this simplification is valid when M >> B, which is expressed as:

L/jumo - wzusy >0 oo (A)

This can be reduced to:
af 2 2.2 (0)
Jp,m g+ >> ?‘

Assuming a frequency of 18 MHz and a relative dielectric constant of 13 (based
upon ground constant measurements made in the DC area and documented in
Appendix B), condition (A) can be expressed as:

o >>0.0137

The requirement for a slowly varying Hg is determined by comparing the
two coefficients from (A.2.23a):

n>> L | (B)

2y

which is equivalent to Mss-L = 7071.
{2

Condition B by itself could require a large conductivity, depending on the
operating frequency. However, when Hg is limited to a slowly varying function,'

then the term %%58")— pH, is quite small, and the second term in equation

(A.2.23a) may be deemed insignificant for normal values of ground conductivity
and pemittivity.
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Recalling the expression for the change in impedance:

AZ = flf j H(p.0) E,(p,0) 2mp dp (A.2.21a)
o0

where AZ is the change in the input impedance of the antenna due to the
influence of the imperfect ground. Using the approximation for Ep in (A.2.24),
and assuming that H; (p,0) is equivalent to H,(p,0) in the region of the ground
plane where M >> B, equation (A.2.21a) becomes:

EAZ=n j [H(p,0))° 27p dp (A2.25)
0

Substituting with the magnetic field expression (A.2.22), the current term
(I,) drops out, and (A.2.25) becomes:

-

- -n - j2Pr iB(r+p)
4 ¢ 2m sina = 7~ cos*(Bh - 01) - le—pz—-— cos(Bh - ot)cost
- ihe-126r -i2Bp
- 21_1&2’_ cos(Bh - a)sin(c - Bh) + & 3 cos’o.
™ p
2ihe iB(r+p) h j2Br )
+_J_.___ sin(o - Bh)cosa. - 25— sin®(o. - Bh)] pdp
rp’ N r’p?
AZ=—{ J' - iB(r+p) q
= cos
21: sin®o. p p

0

i2Bp
e
0

-JB(r +p)
p

+ 2jh sin(a - Bh)coso j
0

For the case where there is no top loading, (h' = 0), . = Bh, and (A.2.26) is
reduced to:
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{2 -iB(r+p) ) -j Bp
Ie 5 dp - 2C08th dp - cos BhJ-
0

21: sanBh [
(A.2.27)

When calculating AZ, the impedance term for the ground plane, N, can
be factored out of the integrals. With p in the denominator of each term, there is
a singularity at p equal to zero. Since the object is to calculate the change in
impedance from a perfect to imperfect ground, one could say that a base plate
made of a good conductor would not contribute to the expression for AZ.
Therefore, one can substitute the parameter "a" for the lower limit , where "a" is
the radius of the "perfect” base.

In this report, equation (A.2.27) is used for computing AZ, with the lower
limit of integration changed to "a". To evaluate AZ in a non-integral form, one
can use the exponential function Ei[-jpa]:

Ei[-jBa] = -

where Ci(x) and Si(x) are the cosine and sine integrals, respectively:

X X
Cix= [t a  sipo=[SDL g
0

These are available as look-up tables, and are included in some mathematical
software packages. Equation (A.2.27) and the exponential function can be
combined to give the following non-integral expression AZ:

AazZ=—T__ 1. —El[ 2B +)] 2" - LEi[- j2B(r,-hy] e 2"
27 sin’Bh 2
- 2cosph - Eil- jB(g+1)h] € - Eil- jB(g-1h] & " + Ei[- jBhg])
+ cos*Bh (Ei[- j2Ba]) } , (A.2.28)
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where

g= a+ (a2 + hz)l/2

h

I, = (a2 + h2)l/2 and

Input Impedance for a Vertical Monopole Qver a Radial Ground Screen

The inclusion of a radial ground screen at the base of the antenna has a
significant effect on the impedance expression for the monopole. Although
(A.2.28) still applies for the region beyond the ground screen (p > a), a separate
expression must be formulated to account for the screen's effect on the surface
magnetic and electric fields. The vertical monopole with a ground screen is
shown in Figure A.2.2.

‘Z

Radial Ground

Screen \)’\ €,,1, @ir)

| | & W, o (ground)
| |

| —— b —]

Figure A.2.2: The representation of a vertical monopole with a radial ground
screen over an imperfect ground used in this development.

For the region p > b, the impedance of the ground is just 1, as defined in
the beginning of part B of this appendix, but when the ground radials are
present (p < b), the impedance is the parallel combination of the screen
impedance, ne, and the surface impedance, 1. This is the equivalent .
impedance term, ny:
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_ N7
NO<p<a)= TET

where:
1 nod In .L

Me= A 21
=—2—M
and d= N

d is the spacing between the radial conductors and ¢ is the radius of the wire.
This expression is an approximation, originally derived for a wire grid in free
space, and is valid if lYed| << 1, where 7Y, is the effective propagation constant.

This assumes that the wires are close enough electrically to approximate a grid.
Ye is defined as:

Retumning to the expression for the change in monopole impedance from
a perfect to an imperfect ground plane: ’

AZ =- I H;;(p.0) E(p.0) 2mp dp (A221a)
0

1
I

we redefine AZ as AZy, and break it into two parts:

AZ = AZ + AZ,

where AZ is the change in the input impedance of the antenna due to the
influence of the imperfect ground outside the ground screen, and AZg is a factor
of the imperfect ground screen system.- Using the Ep approximation in (A.2.24):
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PAZ=n _[ (K (p,0)]” 27p dp (A.2.25)
0

b

PAZ, = %‘ﬁ: [HS(p,0)1° 2mp dp (A.2.29)
a

Equation (A.2.25) was developed in part 1 of this appendix and those
equations still apply, except that the lower limit of integration is now b,
representing the radius of the ground screen. Equation (A.2.29) develops in a
similar fashion, except the equivalent impedance term ny is now a function of
the radial distance p, and can no longer be moved outside of the integral. The
lower limit a still represents the radius of the conducting base plate. This results
in a expression for AZg similar to (A.2.27) and (A.2.28) which cannot be solved
using the exponential functions:

J’ [€ - j2Ppr 281 e jBr+p) .
27 sin’o. p? cos"(Bh - &) 'TCOS(B - a)cosol
jhe §2r -j2Bp
- g“‘llez—' cos(Bh - o)sin(at - Bh) + £ 5 cos?a.
P >
jB(r+p) 2 . j2Br
+21Be—— sinot- Bhycosor - EE=— sin’(or - Bl pap
p? 2
= {cosz(ﬁh (x) d ) b - e - jB(r+p)
M, E=— dp - 2cos(Bh - w)coso: Ny dp
27 sin’oL P

a

j2Br JZBP
- 2jh cos(Bh - o) sin(ct - Bh)J.nx % dp + cos’a N, & 5 dp
a

JB(r+p)
p

— AZ (A.2.30)

+ 2jh sin(o - Bh)cosa M, &

dp - h’sin Yo - Bh)j Ny <

For the case of no top loading, (h' = 0), o= Bh, and (A.2.30) simplifies to:
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JB(r+p)

Br
=——dp - 2cothJ Ny dp

2
I

(A.2.31)

-i2Bp
- coszﬁhJ. N, & 5
a

The AZ term in (A.2.25) can be simplified as was done with (A.2.27), by
incorporating the exponential function. This'is shown below as (A.2.28'), with b
representing the extent of the ground screen:

1 26h ] mer -j2Bh
AZ = m { - 5 Eil- j2B(r, + h)le’ - Eil- j2B(r, - W)e”’
- 2cosph(- Eil- jB(g+Dhle’"™ - Eil- jB(g-1hle " + Eil- jBbg)

+ cos2Bh (Ei[- j2Bb]) } (A.2.28"

where

_b+ (@ +h)"

h

2,12

r,=(t*+h)" and

AZ may be simplified further when the height of the monopole is much
shorter than the radius of the ground screen, which can often the case for a
short vertical whip (with no top loading) in the HF frequency band. Specifically,
we limit the height (h) so that b2 >10h2, which makes r roughly equivalent to p,
since the limits of the integration are from b to . H;(p,0) (for no top loading)
becomes: o

— on
27 sing.

-iBp  _-iBp
[e .- cosa] (A.2.32)

H;(p,O) = p )

which, when substituted into (A.2.25) results in:

AZ = (A.2.33)

27 sin Bh
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-

m (1 - cosar)” Eil- j2a] | (A.2.34)
sin

AZ =

Solving for AZg is much more complicated, because the impedance term,
TNy , is a function of p, and because the remaining integrals do not fit into a

specific form like the exponential function. The ground/ground screen
impedance ny is defined as:

. (2]
n - T‘ -ne _ ero27tp ln kNC)
=+,

] (A.2.35)
) p
NAN + jn 2np lnk_N C }

where N is the number of ground radials, and C is the radial wire thickness. In
Section lll, the calculated values for AZg were found by numerical integration of

equation (A.2.31), with (A.2.35) being used for the impedance term.
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Appendix B. Ground Constant Measurements

This section describes the method for determining the ground constants
of a prospective antenna test location. The method used was taken from
Appendix B of the Hardened Antenna Technology Handbook [10].

The ground constants of an area are found using a monopole probe
inserted vertically into the earth. One may derive these constants, the earth's
effective conductivity (o) and dielectric constant (¢) from measurements taken of
the probe's complex input impedance. The monopole probe is treated as a field
problem of a capacitor with an unknown dielectric.

The monopole probe is shown in Figure B.1. It comprises an electrically
short copper rod, which has a BNC jack attached to one end, and a large (3' X
3') copper plate. The probe is attached to the plate by screwing the BNC jack
through a hole in the center of the plate. A nut has been soldered to the plate
(to accept the BNC jack) to insure a good connection between the feed cable
shield and the plate. Two probe lengths are used, 12" and 18" each with a 3/8"
diameter. The piate also has 4 PVC "legs" glued to one side of the plate, which
allow the measurement of the monopole probe in air (free space).

Probes - 3/8" copper rod,
Plate, Copper,1/8" thick mounted onto BNC Female Jack

Figure B.1: Monopole Probe Assembly
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The test bed is depicted in Figure B.2. An HP 4195A Network Analyzer
(hereafter referred to as the analyzer) is connected to the monopole probe
through a signal divider (directional bridge) which provides isolation between
the reflected (test) and the reference signals. A coaxial cable is used to connect
the reflection test set to the probe's BNC jack. Note that the plate is connected
through the BNC connector on the probe to ground.

Signal Divider

HP 4195A Directional Coupler
(ANZAC CD920-4) A\
Test }
~ 30FT
Source ™
L

|
|
I
I
Ref. |
t
I
I
I

Splitter

Figure B.2: Test Configuration for Ground Constant Measurements using an
HP4195A Network/Spectrum Analyzer with a Monopole Probe

In this set-up, the "Network" configuration of the analyzer is used, and the
input impedance of the probe is obtained from the Smith Chart display, using
the analyzer's marker to select the particular frequency of interest. In orderto -
compensate for the coaxial cable's length and any losses it might contribute to
the impedance measurement of the probe, a one-port full calibration is
performed prior to any measurements. Open circuit, short circuit, and 50 ohm
load terminations are used to perform the calibration of the analyzer. These
terminations are mounted on BNC jacks, and are screwed into the plate in place
of the probe during the calibration routine. '

The expressions used to calculate the conductivity and dielectric

constant of the ground are derived from a general expression for the mput
admittance of an electrically short linear antenna [11]:
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Y = joCy(g, - j 2 B.1
JOCo(& -] @c, ) (B.1)
where:
Y = input admittance of the antenna (monopole probe) in air

Co = the "static" capacitance of the antenna (according to [10]),
which is interpreted to be the capacitance of the probe in air.

Defining X, as the measured reactance of the probe in air, one makes
the following substitutions:

=__1
Xo= oC,

1 _
E—6Ok

and (B.1) becomes:

__ & _60Ac _.
v=-g 828 =G40 (B.2)

Solvinig for €r and o, and expressing G and Q in terms of R and X, which
are the measured resistance and reactance of the probe in the ground, the result
is: '

_ XO[ R ]
o= 0n LR+ X2 (B.3)
€= f°X2 (B.4)
R+X

where:
R = measured resistance of the monopole probe in the earth
X = measured reactance of the monopole probe in the earth
Xo = measured reactance of the probe in free space (in air)

To obtain the static capacitance Xo, the monopole probe reactance is
measured with an air dielectric. The monopole probe is placed on its legs with
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the probe pointing straight up in the air. The network analyzer is then calibrated,
and X, is measured off the Smith Chart display. One must be careful to calibrate
over the entire frequency band being investigated.

For the measurements of the input impedance of the monopole probe in
the earth, a reasonably flat section of earth is located, and most of the grass cut
away to prevent appreciable air pockets between the plate and the earth from
affecting the results. The plate is put in place on the ground, with the PVC legs
pointing up. A steel rod (3/8") is driven through the hole in the plate to the depth
of the probe to be used. This prevents requiring a lot of force to insert the probe,
which could bend the copper rod and/or break off the BNC jack. The rod is
removed, and the analyzer is re-calibrated with the plate in this position. The
probe is then inserted through the hole into the earth and screwed to the plate.
Measurements of the input impedance (R and X) of the probe in the ground are
read off the Smith Chart display of the Network Analyzer.

Ground Constant Surveys of Potential Antenna Test Locations

The three sites surveyed for testing the theory set forth in this report were:
the Naval Research Laboratory's Waldorf Lower Site Facility in Waldorf, MD, the
U.S. Coast Guard Station in Alexandria, VA, and the Naval Electronic Systems
Engineering Activity (NESEA) in St. Inigoes, MD. Each site selected contained
an area that was flat, relatively large, free of trees and brush, and had no power
or sewer lines running underneath which could corrupt the results.

Measurements of the input impedance (R and X) of the probe in the ground
and of the static capacitive reactance (Xo) were made at 1 MHz intervals from 5 to
20 MHz. The values at each frequency were the result of a visual averaging of a
number of swept measurements made by the analyzer. The variation for the
readings of Xo at the low end of the frequency band was rather large, but a
significant majority of the values have a variation of less than 1%.

Figures B.3 through B.8 are the results of the site surveys, showing the

conductivity and dielectric constant of the earth with respect to frequency at each
location. Monopole probe measurements were made at four or more positions
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within the desired area of operation at each site. Comparing the results, it can be
seen that the NESEA site (Figures B.5 and B.8) held the most consistent ground
constant values over the entire area surveyed. The Coast Guard site (Figures B.4
and B.7) displayed a great deal of variation from one measurement position
within the surveyed area to another. This can possibly be attributed to the high
water content in some low-lying sections because of the the poor drainage in the
area. Even though measurements at all three sites were done on two different
days, there is no great difference from one day to another, except in the case of
the NESEA field site, whose dielectric constant was lower (and much more
consistent) on the second set of measurements. The weather for each day's
measurements hot and dry, with no precipitation during the preceding two days.
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Figure B.3: Ground Conductivity vs. Frequency for NRL Waldorf Lower Site,
measured on 6/6/90 (Pos. 1) and 6/13/90 (Pos. 2-4) using a 12" probe.
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Figure B.4: Ground Conductivity vs. Frequency for Coast Guard Station,
measured on 6/13/90 (Pos. 1 & 2) and 6/27/90 (Pos. 3-6) using a 12" probe.
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Figure B.5: Ground Conductivity vs. Frequency for NESEA field site, '
measured on 6/8/90 (Pos. 1 & 2) and 7/3/90 (Pos. 3-6) using a 12" probe.
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Figure B.6: Relative Dielectric Constant vs. Frequency at NRL Waldorf Lower
Site, measured on 6/6/90 (Pos. 1) and 6/13/90 (Pos. 2-4)using a 12" probe.
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- Figure B.7: Relative Dielectric Constant vs. Frequency at Coast Guard Station,
measured on 6/13/90 (Pos. 1 & 2) and 6/27/90 (Pos. 3-6)using a 12" probe.
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Figure B.8: Relative Dielectric Constant vs. Frequency at NESEA field site,
measured on 6/8/90 (Pos. 1 & 2) and 7/3/90 (Pos. 3-6) using a 12" probe

It should be noted that the results of all three sites did not conform to the
ground conditions set forth by Wait in [3]. The Waldorf site came the closest to
meeting the criteria set forth in equation (2.5) of Section II.
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